Home > Stem Cell Reviews and Reports > Article

Potential Application of Intestinal Organoids in Intestinal Diseases

Published: 08 November 2023

Volume 20, pages 124-137, (2024) Cite this article

Stem Cell Reviews and Reports

2024. 02. 29. Hyewon Lee

Intestinal organoid

Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues.

Potential Application of Intestinal Organoids in Intestinal Diseases 1. Application of intestinal organoids in **regenerative medicine**

Xenotransplanted human colon & ileum organoids into native colonic epithelium (mouse, rat)

Generation of small intestinalized colon

- 1 Epithelium removal (EDTA treatment)
- 2 Organoid infusion (Syringe filled with organoid suspension)
- ③ Cell retension

- Colonic epithelium를 human colon- or ileum-derived organoid로 대체
- ileum-derived organoid: functional한 small intestinalized colon (SIC) 형성
- SIC는 SBS의 Rat model에서 장 기능 개선
- ileum organoid 대신 colon organoid 이식하면 사망률↑

Sugimoto, S., Kobayashi, E., Fujii, M., et al. (2021). An organoid-based organrepurposing approach to treat short bowel syndrome. Nature, 592, 99–104.

Potential Application of Intestinal Organoids in Intestinal Diseases 2. Application of intestinal organoids in **genetic engineering**

CRISPR/Cas9-Mediated Genome Editing in Adult Stem Cells

CFTR: cystic fibrosis transmembrane conductor receptor

F508del: CFTR 돌연변이; exon 11의 508번에서 Phe 결손

Forskolin: cAMP증가→CFTR 활성화→organoid 부풀게 됨

- CFTR correction by CRISPR/Cas9 system
- CFTR 기능 회복: Forskolin treatment → organoid swelling ↑

Schwank, G., Koo, B. K., Sasselli, V., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658.

Potential Application of Intestinal Organoids in Intestinal Diseases 3. Application of intestinal organoids in **host-microbial interactions**

Microinjection of organoids to mimic enteric infection

► fluorescence reduction

- WT & Mmp7-/- mice SI에 Salmonella enterica serovar Typhimurium microinjection
- MMP7 did not alter the integrity of the organoid lumen
- WT mice produced mature α -defensins (*Mmp7*-/- mice did not)
- WT organoid가 α-defensin 있는 sealed lumen 형성 → Bacterial growth↓

Wilson, S. S., Tocchi, A., Holly, M. K., et al. (2015). A small intestinal organoid model of noninvasive enteric pathogen-epithelial cell interactions. Mucosal Immunology, 8, 352–361.

MMP7: protease (mouse pro-α-defensins→mature form) α-defensin: antimicrobial peptide → *S. enterica* Typhimurium 성장 제한 Research

JCI The Journal of Clinical Investigation

Corticosteroids impair epithelial regeneration in immunemediated intestinal damage

Viktor Arnhold, ..., Caroline A. Lindemans, Alan M. Hanash

J Clin Invest. 2024. https://doi.org/10.1172/JCI155880.

$$IF = 15.9$$

2024. 02. 29. Hyewon Lee

Corticosteroid (CS)

- Anti-inflammatory medicines used to treat
 a range of conditions
- Target: Glucocorticoid receptor
- prednisolone, methylprednisolone, dex, budesonide ...

Glucocorticoid receptor (GR)

- **Glucocorticoid receptor** is widely expressed, including within the intestines
- GR protein is encoded by *NR3C1* gene which is located on chromosome 5

Allogeneic hematopoietic/bone marrow transplantation (allo-BMT)

Acute GVHD, which occurs in 30-70% of patients undergoing allo-BMT,

is an immune-mediated complication arising from donor T-cell-mediated responses against recipient tissues

Graft-versus-Host Disease (GvHD)

Corticosteroids reduce epithelial proliferation in vivo

scRNA-seq

• SI epithelial cells from WT B6 mice

► stem cell, TA cell, enterocyte lineage에서 발현↑

Immunohistochemical (IHC) staining for GR in the SI of WT mice

Corticosteroids reduce epithelial proliferation in vivo

GSEA (Gene set enrichment analysis)

SI epithelial cells of WT mice

WT B6 mice

•

treated w/MP

Fig. 1D-I

Corticosteroid exposure reduces mouse and human organoid cell proliferation

В

С

80

n

Organoid size (µm² x 10³) 05 05 09 09

120-

Murine SI organoids

- cultured in ENR +/- MP, DEX, Budesonide
- for 7 days •
- n= 3-8 wells per group ٠

200 µm

Organoid number (frequency)

eplithelial proliferation

Corticosteroid exposure reduces mouse and human organoid cell proliferation

Corticosteroid exposure reduces mouse and human organoid cell proliferation

- Human SI organoids
- primary duodenal tissue
- cultured +/- MP for 5 days

Human

Κ

UMAP-2

UMAP-2

• n= 6 wells per group

scRNA-seq

Corticosteroid reduce the proliferation of murine and human organoid cells

Epithelial effects of corticosteroid treatment after irradiation are timing dependent.

Epithelial effects of corticosteroid treatment after irradiation are timing dependent.

Corticosteroids impair the epithelial response to immune-mediated GI damage

Corticosteroids augment immune-mediated GI damage induced by T cells and their effector cytokines ex vivo

- SI organoid (B6)
- cultured with +/- T cells & MP

500 µm

Nr3c1: gene encoding glucocorticoid receptor (GR)

► GR-deficient T cell co-culture & MP treatment

 \rightarrow more severe organoid reduction

- SI organoid (B6)
- cultured +/- MP & rmIFNγ

- SI organoid (Human)
- cultured +/- MP & rhIFNγ

500 µm

m

MP: - + - +IFN $\gamma: - - + +$ Bak1: pro-apoptotic gene

Bak1

- IFN $\gamma \rightarrow$ crypt loss in GVHD & organoid toxicity
- ► IFNγ & MP treatment → reduced viable SI organoid

IL-22 treatment overcomes corticosteroid-induced inhibition of epithelial proliferation

Fig. 6A-H

1000 µm

IL-22 treatment overcomes corticosteroid-induced inhibition of epithelial proliferation

F-652: rhlL-22-dimer/Fc-fusion protein

F-652 administration (in vivo) (WT B6 mice)

• (+/-) MP & F-652

 $MP \qquad MP + F-652 \qquad F-$

Delayed steroid administration (in vivo) (WT B6 mice)

(+/-) MP & F-652 i.p. starting 72 hours post-TBI

Combined CS & F-652 treatment in GVHD

- B6-into-BALB/c transplant of BM +/- T cells
- (+/-) MP & F-652 starting on day 7 post-TBI

Olfm4: SI ISC marker

Summary

Direct effects of corticosteroids on intestinal epithelium in graft vs. host disease

- Intestinal epithelium is directly targeted by CS
 - Impaired epithelial proliferation
 - Potentiation of IFNγ-induced ISC apoptosis
 - More severe crypt loss and reduced frequency of ISCs
- Treatment of intestinal epithelium with IL-22 countered CS-mediated epithelial suppression
 - Activation of STAT3
 - Promotion of epithelial proliferation
 - Enhanced ISC recovery